7,494 research outputs found

    Astrophysical and Cosmological Tests of Quantum Theory

    Get PDF
    We discuss several proposals for astrophysical and cosmological tests of quantum theory. The tests are motivated by deterministic hidden-variables theories, and in particular by the view that quantum physics is merely an effective theory of an equilibrium state. The proposed tests involve searching for nonequilibrium violations of quantum theory in: primordial inflaton fluctuations imprinted on the cosmic microwave background, relic cosmological particles, Hawking radiation, photons with entangled partners inside black holes, neutrino oscillations, and particles from very distant sources.Comment: 25 pages. Amendment to section 7. Contribution to: "The Quantum Universe", special issue of Journal of Physics A, dedicated to Prof. G.-C. Ghirardi on the occasion of his seventieth birthda

    Effect of metal clusters on the swelling of gold-fluorocarbon-polymer composite films

    Full text link
    We have investigated the phenomenon of swelling due to acetone diffusion in fluorocarbon polymer films doped with different gold concentrations below the percolation threshold. The presence of the gold clusters in the polymer is shown to improve the mixing between the fluorocarbon polymer and the acetone, which is not a good solvent for this kind of polymers. In order to explain the experimental results the stoichiometry and the morphology of the polymer--metal system have been studied and a modified version of the Flory--Huggins model has been developed

    Inflationary Cosmology as a Probe of Primordial Quantum Mechanics

    Full text link
    We show that inflationary cosmology may be used to test the statistical predictions of quantum theory at very short distances and at very early times. Hidden-variables theories, such as the pilot-wave theory of de Broglie and Bohm, allow the existence of vacuum states with non-standard field fluctuations ('quantum nonequilibrium'). We show that inflationary expansion can transfer microscopic nonequilibrium to macroscopic scales, resulting in anomalous power spectra for the cosmic microwave background. The conclusions depend only weakly on the details of the de Broglie-Bohm dynamics. We discuss, in particular, the nonequilibrium breaking of scale invariance for the primordial (scalar) power spectrum. We also show how nonequilibrium can generate primordial perturbations with non-random phases and inter-mode correlations (primordial non-Gaussianity). We address the possibility of a low-power anomaly at large angular scales, and show how it might arise from a nonequilibrium suppression of quantum noise. Recent observations are used to set an approximate bound on violations of quantum theory in the early universe.Comment: 44 pages. Minor changes in v

    Geometrical view of quantum entanglement

    Full text link
    Although a precise description of microscopic physical problems requires a full quantum mechanical treatment, physical quantities are generally discussed in terms of classical variables. One exception is quantum entanglement which apparently has no classical counterpart. We demonstrate here how quantum entanglement may be within the de Broglie-Bohm interpretation of quantum mechanics visualized in geometrical terms, giving new insight into this mysterious phenomenon and a language to describe it. On the basis of our analysis of the dynamics of a pair of qubits, quantum entanglement is linked to concurrent motion of angular momenta in the Bohmian space of hidden variables and to the average angle between these momenta

    Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria

    No full text
    The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date compendium of c-di-GMP pathways connected to biofilm formation, biofilm-associated motilities, and other functionalities in the ubiquitous and opportunistic human pathogen Pseudomonas aeruginosa. This bacterium is frequently adopted as a model organism to study bacterial biofilm formation. Importantly, its versatility and adaptation capabilities are linked with a broad range of complex regulatory networks, including a large set of genes involved in c-di-GMP biosynthesis, degradation, and transmission

    A first experimental test of de Broglie-Bohm theory against standard quantum mechanics

    Full text link
    De Broglie - Bohm (dBB) theory is a deterministic theory, built for reproducing almost all Quantum Mechanics (QM) predictions, where position plays the role of a hidden variable. It was recently shown that different coincidence patterns are predicted by QM and dBB when a double slit experiment is realised under specific conditions and, therefore, an experiment can test the two theories. In this letter we present the first realisation of such a double slit experiment by using correlated photons produced in type I Parametric Down Conversion. Our results confirm QM contradicting dBB predictions
    • …
    corecore